please dont rip this site

SX Microcontroller Math Method

Complex number magnitude calculation

by Nikolai Golovchenko

;***********************************************
; Complex number magnitude calculation
; using CORDIC algorithm described at
; www.dspguru.com\info\faqs\cordic.htm
;
; Input:
;  ReH:ReL, ImH:ImL - complex number (16 bit signed)
;
; Output:
;  ReH:ReL - magnitude (16 bit unsigned)
;  ImH:ImL - garbage
;
; Temporaries:
;  RekH:RekL - Re multipled by k (k=2^-L, L=0,1,2,...15)
;  Counter - loop counter
;  Temp
;
; Instructions: 147
; Execution time(worst case including return):
;  18+18+15*(8+2+20+5+7.5*10-2)+60 ~= 1700 instruction cycles

; Notes:
;  1) Precision is 0.028%, depends on how exact
;  the division by CORDIC gain is implemented:
;	(0.60725293510314)
;	a) 1/2+1/8-1/64-1/512 -> 0.028%
;	b) 1/2+1/8-1/64-1/512-1/4096 -> 0.012384%
;	c) 1/2+1/8-1/64-1/512-1/4096+1/16384 -> 0.002333%
;  2) Range of input data should be restricted so
;  that M=sqrt(Re*Re+Im*Im) is less than 65536*0.60725293510314~=39760
;  to prevent overflow in magnitude during calculation
;  3) To reduce execution time, the number of loops can be
;  reduced to 8. The angle after rotation the initial
;  vector 8 times is less then 0.22381 deg, which is good
;  enough precision. Besides, the gain at 8 rotations is smaller
;  and closer to the approximated gain, which is used in this code.
;  Reduced execution time will be ~850 cycles!
;
; 6 Aug 2000 by Nikolai Golovchenko
;***********************************************
Magnitude16
;Find absolute value of the vector components
	sb	ReH.7		;Re = abs(Re)
	jmp	Magnitude16a
	not	ReL
	not	ReH
	inc	ReL
	snb	Z
	inc	ReH
Magnitude16a
	sb	ImH.7		;Im = abs(Im)
	jmp	Magnitude16b
	not	ImL
	not	ImH
	inc	ImL
	snb	Z
	inc	ImH
Magnitude16b
;Test imaginary part for zero and if yes, quit
	mov	W, ImL
	or	W, ImH
	snb	Z
	ret	;quit if zero imaginary part
;Perform first iteration
	mov	W, ImL		;Imk = Im
	mov	ImkL, W
	mov	W, ImH
	mov	ImkH, W

	mov	W, ReL		;Im' = Im - Re
	sub	ImL, W
	mov	W, ReH
	sb	C
	movsz	W, ++ReH
	sub	ImH, W

	mov	W, ImkL		;Re' = Re + Im = Re + Imk
	add	ReL, W
	mov	W, ImkH
	snb	C
	movsz	W, ++ImkH
	add	ReH, W
;Begin loop
	mov	W, #1
	mov	Counter, W
Magnitude16loop
;load scaled values
	mov	W, ImL		;Imk = Im
	mov	ImkL, W
	mov	W, ImH
	mov	ImkH, W
	mov	W, ReL		;Rek = Re
	mov	RekL, W
	mov	W, ReH
	mov	RekH, W
;scale them (1 to 15 right shifts)
	mov	W, Counter	;load counter value to Temp
	mov	Temp, W
Magnitude16loop2
	clrb	C		;unsigned right shift for Rek
	rr	RekH
	rr	RekL
	mov	W, <<ImkH	;signed right shift for Imk
	rr	ImkH
	rr	ImkL
	decsz	Temp
	jmp	Magnitude16loop2
;update current values
	mov	W, ImkL
	snb	ImH.7		;if Im < 0 add a phase, if Im >= 0 substract a phase
	jmp	Magnitude16AddPhase
;substract a phase
	add	ReL, W		;Re' = Re + Imk
	mov	W, ImkH
	snb	C
	movsz	W, ++ImkH
	add	ReH, W

	mov	W, RekL		;Im' = Im - Rek
	sub	ImL, W
	mov	W, RekH
	sb	C
	movsz	W, ++RekH
	sub	ImH, W

	jmp	Magnitude16loopend
Magnitude16AddPhase
;add a phase
	snb	C		;correct Imk, because shifts of negative
	movsz	W, ++ImkL	;values like (-1 >> 1 = -1) can
	dec	ImkH		;accumulate error. With this correction,
	inc	ImkH		;shifts of negative values will work like
				;shifts of positive values (i.e. round to zero)

	sub	ReL, W		;Re' = Re - Imk
	mov	W, ImkH
	sb	C
	movsz	W, ++ImkH
	sub	ReH, W

	mov	W, RekL		;Im' = Im + Rek
	add	ImL, W
	mov	W, RekH
	snb	C
	movsz	W, ++RekH
	add	ImH, W
Magnitude16loopend
	inc	Counter
	sb	Counter.4	;repeat untill counter reaches 16
;or uncomment this for better performance
;	sb	Counter.3	;repeat untill counter reaches 8
	jmp	Magnitude16loop

;Optional:
;Divide result by 1.64676025786545 (CORDIC gain)
;or multiply by 0.60725293510314 = 1/2+1/8-1/64-1/512 - 0.028%
	mov	W, ReH
	mov	RekH, W
	mov	W, ReL
	mov	RekL, W
	clrb	C
	rr	ReH
	rr	ReL
	clrb	C
	rr	ReH
	rr	ReL
	clrb	C
	rr	ReH
	rr	ReL
	not	ReL
	not	ReH
	inc	ReL
	snb	Z
	inc	ReH
	clr	Temp
	snb	ReH.7
	not	Temp
	sub	ReL, W
	mov	W, RekH
	sb	C
	movsz	W, ++RekH
	sub	ReH, W
	sb	C
	dec	Temp
	rr	Temp
	rr	ReH
	rr	ReL
	rr	Temp
	rr	ReH
	rr	ReL
	mov	W, <<ReH
	rr	ReH
	rr	ReL
	mov	W, RekL
	add	ReL, W
	mov	W, RekH
	snb	C
	movsz	W, ++RekH
	add	ReH, W
	clrb	C
	rr	ReH
	rr	ReL
	clrb	C
	rr	ReH
	rr	ReL
	mov	W, RekL
	add	ReL, W
	mov	W, RekH
	snb	C
	movsz	W, ++RekH
	add	ReH, W
	rr	ReH
	rr	ReL

;Done!
	ret
;***********************************************



file: /Techref/scenix/lib/math/vect/mag-ng_sx.htm, 4KB, , updated: 2004/6/10 13:40, local time: 2024/12/24 20:34, owner: NG--944,
TOP NEW HELP FIND: 
18.119.132.80:LOG IN

 ©2024 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions?
Please DO link to this page! Digg it! / MAKE!

<A HREF="http://massmind.org/techref/scenix/lib/math/vect/mag-ng_sx.htm"> SX Microcontroller Math Method </A>

After you find an appropriate page, you are invited to your to this massmind site! (posts will be visible only to you before review) Just type a nice message (short messages are blocked as spam) in the box and press the Post button. (HTML welcomed, but not the <A tag: Instead, use the link box to link to another page. A tutorial is available Members can login to post directly, become page editors, and be credited for their posts.


Link? Put it here: 
if you want a response, please enter your email address: 
Attn spammers: All posts are reviewed before being made visible to anyone other than the poster.
Did you find what you needed?

 

Welcome to massmind.org!

 

Welcome to massmind.org!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  .